CDC28
Gene Ontology Biological Process
- 7-methylguanosine mRNA capping [IMP]
- chromatin remodeling [IMP]
- meiotic DNA double-strand break processing [IGI]
- negative regulation of double-strand break repair via nonhomologous end joining [IMP]
- negative regulation of meiotic cell cycle [IMP]
- negative regulation of mitotic cell cycle [IDA]
- negative regulation of sister chromatid cohesion [IMP]
- negative regulation of transcription, DNA-templated [IDA, IMP]
- peptidyl-serine phosphorylation [IDA]
- phosphorylation of RNA polymerase II C-terminal domain [IDA]
- positive regulation of meiotic cell cycle [IDA, IMP]
- positive regulation of mitotic cell cycle [IMP]
- positive regulation of nuclear cell cycle DNA replication [IDA, IMP]
- positive regulation of spindle pole body separation [IGI, IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [IDA, IGI]
- positive regulation of triglyceride catabolic process [IGI, IMP]
- protein phosphorylation [IDA]
- regulation of budding cell apical bud growth [IGI, IMP]
- regulation of double-strand break repair via homologous recombination [IMP]
- regulation of filamentous growth [IMP]
- regulation of protein localization [IMP]
- synaptonemal complex assembly [IMP]
- vesicle-mediated transport [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
HSL1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Negative Genetic
Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.
Publication
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs.
A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated ... [more]
Quantitative Score
- -0.147 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
- phenotype: colony size (APO:0000063)
Additional Notes
- score threshold <= -0.12, interaction detected by Synthetic Genetic Array (SGA)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDC28 HSL1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1471 | BioGRID | 358651 | |
HSL1 CDC28 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4206 | BioGRID | 2053938 | |
CDC28 HSL1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.6046 | BioGRID | 1961825 | |
CDC28 HSL1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 162932 | |
HSL1 CDC28 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158150 |
Curated By
- BioGRID