BAIT
SNRPD3
SMD3, Sm-D3
small nuclear ribonucleoprotein D3 polypeptide 18kDa
GO Process (10)
GO Function (4)
GO Component (14)
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- RNA splicing [TAS]
- gene expression [TAS]
- histone mRNA metabolic process [TAS]
- mRNA 3'-end processing [TAS]
- mRNA splicing, via spliceosome [IC, TAS]
- ncRNA metabolic process [TAS]
- spliceosomal snRNP assembly [IDA, TAS]
- termination of RNA polymerase II transcription [TAS]
- transcription from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- SMN-Sm protein complex [IDA]
- U1 snRNP [IDA]
- U12-type spliceosomal complex [IDA]
- U4 snRNP [IDA]
- U7 snRNP [IDA]
- catalytic step 2 spliceosome [IDA]
- cytoplasm [IDA]
- cytosol [IDA, TAS]
- extracellular vesicular exosome [IDA]
- methylosome [IDA]
- nucleoplasm [IDA, TAS]
- pICln-Sm protein complex [IDA]
- small nuclear ribonucleoprotein complex [TAS]
- spliceosomal complex [TAS]
Homo sapiens
PREY
RELA
NFKB3, p65
v-rel avian reticuloendotheliosis viral oncogene homolog A
GO Process (43)
GO Function (20)
GO Component (5)
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- T cell receptor signaling pathway [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- cellular defense response [NAS]
- cellular response to hydrogen peroxide [IDA]
- cellular response to interleukin-1 [IDA]
- cellular response to interleukin-6 [IMP]
- cellular response to nicotine [IMP]
- cellular response to peptide hormone stimulus [IMP]
- cellular response to tumor necrosis factor [IDA]
- cytokine-mediated signaling pathway [IDA]
- defense response to virus [NAS]
- inflammatory response [IDA]
- innate immune response [TAS]
- membrane protein intracellular domain proteolysis [TAS]
- negative regulation of apoptotic process [IDA, TAS]
- negative regulation of extrinsic apoptotic signaling pathway [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- nucleotide-binding oligomerization domain containing 2 signaling pathway [IDA]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IEP]
- positive regulation of NF-kappaB transcription factor activity [IDA, TAS]
- positive regulation of cell proliferation [IDA]
- positive regulation of miRNA metabolic process [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription, DNA-templated [IDA]
- positive regulation of type I interferon production [TAS]
- regulation of inflammatory response [ISS]
- response to UV-B [IDA]
- response to interleukin-1 [IGI]
- response to organic substance [IDA]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [IDA]
- NF-kappaB binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- activating transcription factor binding [IPI]
- chromatin binding [IDA]
- identical protein binding [IDA, IPI]
- phosphate ion binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- DNA binding [IDA]
- NF-kappaB binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- activating transcription factor binding [IPI]
- chromatin binding [IDA]
- identical protein binding [IDA, IPI]
- phosphate ion binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
Homo sapiens
Co-fractionation
Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.
Publication
A high-throughput approach for measuring temporal changes in the interactome.
Interactomes are often measured using affinity purification-mass spectrometry (AP-MS) or yeast two-hybrid approaches, but these methods do not provide stoichiometric or temporal information. We combine quantitative proteomics and size-exclusion chromatography to map 291 coeluting complexes. This method allows mapping of an interactome to the same depth and accuracy as AP-MS with less work and without overexpression or tagging. The use ... [more]
Nat. Methods Sep. 01, 2012; 9(9);907-9 [Pubmed: 22863883]
Throughput
- High Throughput
Ontology Terms
- hela cell (BTO:0000567) [cervical adenocarcinoma (DOID:3702)]
Curated By
- BioGRID