NUAK1
Gene Ontology Biological Process
Gene Ontology Molecular Function
USP9X
Gene Ontology Biological Process
- BMP signaling pathway [IDA]
- axon extension [IMP]
- female gamete generation [TAS]
- gene expression [TAS]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- neuron migration [IMP]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IBA]
- protein deubiquitination [IDA]
- regulation of proteasomal protein catabolic process [IBA]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [IMP, TAS]
Gene Ontology Molecular Function
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Interplay between Polo kinase, LKB1-activated NUAK1 kinase, PP1βMYPT1 phosphatase complex and the SCFβTrCP E3 ubiquitin ligase.
NUAK1 and NUAK2 protein kinases are activated by the LKB1 tumour suppressor and have been implicated in regulating multiple processes such as cell survival, senescence, adhesion and polarity. Here we present evidence that expression of NUAK1 is controlled by cyclin dependent kinase (CDK), Polo kinase (PLK) and the Skp, Cullin, F-boxβTrCP (SCFβTrCP) E3 ubiquitin ligase complex. Our data indicate that ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
NUAK1 USP9X | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 3298 | BioGRID | 3480925 | |
USP9X NUAK1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
USP9X NUAK1 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 330453 | |
NUAK1 USP9X | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | 330311 |
Curated By
- BioGRID