CLB2
Gene Ontology Biological Process
Gene Ontology Molecular Function
XRS2
Gene Ontology Biological Process
- base-excision repair [IGI, IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [IMP]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- sporulation resulting in formation of a cellular spore [IMP]
- telomere maintenance [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Phenotypic Suppression
A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Cdk1-dependent regulation of the Mre11 complex couples DNA repair pathways to cell cycle progression.
Homologous recombination (HR) and non-homologous end joining (NHEJ) are the main pathways ensuring the repair of DNA double-stranded breaks (DSBs) in eukaryotes. It has long been known that cell cycle stage is a major determinant of the type of pathway used to repair DSBs in vivo. However, the mechanistic basis for the cell cycle regulation of the DNA damage response ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: protein/peptide modification (APO:0000131)
Additional Notes
- Figure 2E
- genetic complex
- xrs2-7A mutation suppresses Xrs2 phosphorylation seen in strain overexpressing CDC28 and CLB2
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CLB2 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.9977 | BioGRID | 216500 | |
XRS2 CLB2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1257 | BioGRID | 370093 | |
CLB2 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1257 | BioGRID | 422134 | |
XRS2 CLB2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1225 | BioGRID | 2100534 | |
CLB2 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1834 | BioGRID | 2196129 | |
CLB2 XRS2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 157101 | |
XRS2 CLB2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 457480 | |
XRS2 CLB2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 1113070 |
Curated By
- BioGRID