BAIT

UBX2

SEL1, YML013W
Bridging factor involved in ER-associated protein degradation (ERAD); bridges the cytosolic Cdc48p-Npl1p-Ufd1p ATPase complex and the membrane associated Ssm4p and Hrd1p ubiquitin ligase complexes; contains a UBX (ubiquitin regulatory X) domain and a ubiquitin-associated (UBA) domain; redistributes from the ER to lipid droplets during the diauxic shift and stationary phase; required for the maintenance of lipid homeostasis
Saccharomyces cerevisiae (S288c)
PREY

IRE1

ERN1, bifunctional endoribonuclease/protein kinase IRE1, L000000875, YHR079C
Serine-threonine kinase and endoribonuclease; transmembrane protein that mediates the unfolded protein response (UPR) by regulating Hac1p synthesis through HAC1 mRNA splicing; role in homeostatic adaptation to ER stress; Kar2p binds inactive Ire1p and releases from it upon ER stress
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Doa1 targets ubiquitinated substrates for mitochondria-associated degradation.

Wu X, Li L, Jiang H

Mitochondria-associated degradation (MAD) mediated by the Cdc48 complex and proteasome degrades ubiquitinated mitochondrial outer-membrane proteins. MAD is critical for mitochondrial proteostasis, but it remains poorly characterized. We identified several mitochondrial Cdc48 substrates and developed a genetic screen assay to uncover regulators of the Cdc48-dependent MAD pathway. Surprisingly, we identified Doa1, a substrate-processing factor of Cdc48 that inhibits the degradation of ... [more]

J. Cell Biol. Apr. 11, 2016; 213(1);49-63 [Pubmed: 27044889]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: heat sensitivity (APO:0000147)
  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
IRE1 UBX2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1448BioGRID
2127424
UBX2 IRE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-9.6578BioGRID
582898
UBX2 IRE1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-17.8052BioGRID
895528
IRE1 UBX2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
575634

Curated By

  • BioGRID