CDH1
Gene Ontology Biological Process
- activation of mitotic anaphase-promoting complex activity [IMP]
- negative regulation of spindle pole body separation [IGI, IMP]
- positive regulation of cyclin catabolic process [IDA]
- positive regulation of mitotic metaphase/anaphase transition [IMP]
- positive regulation of protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA]
- regulation of cell size [IMP]
Gene Ontology Molecular Function
SIC1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Dosage Rescue
A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.
Publication
Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit.
We evaluated the hypothesis that the N-terminal region of the replication control protein Cdc6 acts as an inhibitor of cyclin-dependent kinase (Cdk) activity, promoting mitotic exit. Cdc6 accumulation is restricted to the period from mid-cell cycle until the succeeding G1, due to proteolytic control that requires the Cdc6 N-terminal region. During late mitosis, Cdc6 is present at levels comparable with ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: viability (APO:0000111)
Additional Notes
- genetic complex
- overexpression of Sic1 can rescue the viability of a cdh1/swi5 double mutant
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
SIC1 CDH1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.19 | BioGRID | 2359263 | |
CDH1 SIC1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 1240464 | |
CDH1 SIC1 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 1240465 | |
SIC1 CDH1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 657114 | |
CDH1 SIC1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 1240466 | |
CDH1 SIC1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 644004 | |
CDH1 SIC1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 3309670 | |
SIC1 CDH1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 456734 | |
CDH1 SIC1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 163625 |
Curated By
- BioGRID