CDH1
Gene Ontology Biological Process
- activation of mitotic anaphase-promoting complex activity [IMP]
- negative regulation of spindle pole body separation [IGI, IMP]
- positive regulation of cyclin catabolic process [IDA]
- positive regulation of mitotic metaphase/anaphase transition [IMP]
- positive regulation of protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IDA]
- regulation of cell size [IMP]
Gene Ontology Molecular Function
SIC1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Yeast Hct1 is a regulator of Clb2 cyclin proteolysis.
Stage-specific proteolysis of mitotic cyclins is fundamental to eukaryotic cell cycle regulation. We found that yeast Hct1, a conserved protein of eukaryotes, is a necessary and rate-limiting component of this proteolysis pathway. In hct1 mutants, the mitotic cyclin Clb2 is highly stabilized and inappropriately induces DNA replication, while G1 cyclins and other proteolytic substrates remain short-lived. Viability of hct1 mutants ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDH1 SIC1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 155408 | |
SIC1 CDH1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.19 | BioGRID | 2359263 | |
CDH1 SIC1 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 1240464 | |
CDH1 SIC1 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 1240465 | |
SIC1 CDH1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 657114 | |
CDH1 SIC1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 1240466 | |
CDH1 SIC1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 644004 | |
CDH1 SIC1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 3309670 | |
SIC1 CDH1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 456734 |
Curated By
- BioGRID