BAIT

CLB2

B-type cyclin CLB2, L000000350, YPR119W
B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the transition from G2 to M phase; accumulates during G2 and M, then targeted via a destruction box motif for ubiquitin-mediated degradation by the proteasome; CLB2 has a paralog, CLB1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

CDC14

OAF3, phosphoprotein phosphatase CDC14, L000000254, YFR028C
Protein phosphatase required for mitotic exit; required for rDNA segregation, cytokinesis, meiosis I spindle disassembly, and environmental stress response; maintained in nucleolus by Cdc55p in early meiosis until liberated by the FEAR and Mitotic Exit Network in anaphase, enabling it to effect a decrease in CDK/B-cyclin activity and mitotic exit; sequestered in metaphase II, then released again upon entry into anaphase II
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Mutations in CDC14 result in high sensitivity to cyclin gene dosage in Saccharomyces cerevisiae.

Yuste-Rojas M, Cross FR

We screened for mutations that resulted in lethality when the G1 cyclin Cln2p was overexpressed throughout the cell cycle in Saccharomyces cerevisiae. Mutations in five complementation groups were found to give this phenotype, and three of the mutated genes were identified as MEC1, NUP170, and CDC14. Mutations in CDC14 may have been recovered in the screen because Cdc14p may reduce ... [more]

Mol. Gen. Genet. Feb. 01, 2000; 263(1);60-72 [Pubmed: 10732674]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CDC14 CLB2
Dosage Lethality
Dosage Lethality

A genetic interaction is inferred when over expression or increased dosage of one gene causes lethality in a strain that is mutated or deleted for another gene.

Low-BioGRID
153775
CDC14 CLB2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1546BioGRID
378119
CLB2 CDC14
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2195BioGRID
2074754
CDC14 CLB2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.171BioGRID
1980156
CDC14 CLB2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
554289
CLB2 CDC14
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
1115517
CLB2 CDC14
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
1115515

Curated By

  • BioGRID