BAIT

MRE11

NGS1, RAD58, XRS4, MRX complex nuclease subunit, L000004732, L000001149, L000004275, YMR224C
Nuclease subunit of the MRX complex with Rad50p and Xrs2p; complex functions in repair of DNA double-strand breaks and in telomere stability; Mre11p associates with Ser/Thr-rich ORFs in premeiotic phase; nuclease activity required for MRX function; widely conserved; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

SAE2

COM1, ssDNA endodeoxyribonuclease SAE2, L000002892, YGL175C
Endonuclease required for telomere elongation; also required for telomeric 5' C-rich strand resection; involved in processing hairpin DNA structures with MRX complex; involved in double-strand break repair; required for normal resistance to DNA-damaging agents; exists in form of inactive oligomers that are transiently released into smaller active units by a series of phosphorylations; DNA damage triggers removal of Sae2p ensuring that active Sae2p is present only transiently
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress.

Ghodke I, Muniyappa K

In Saccharomyces cerevisiae, the Mre11-Rad50-Xrs2 (MRX) protein complex plays pivotal roles in double-strand break (DSB) repair, replication stress and telomere length maintenance. Another protein linked to DSB repair is Sae2, which regulates MRX persistence at DSBs. However, very little is known about its role in DNA replication stress and repair. Here, we reveal a crucial role for Sae2 in DNA ... [more]

J. Biosci. Dec. 01, 2016; 41(4);615-641 [Pubmed: 27966484]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)
  • phenotype: resistance to chemicals (APO:0000087)

Additional Notes

  • Figure 2
  • HU sensitivity

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SAE2 MRE11
Dosage Growth Defect
Dosage Growth Defect

A genetic interaction is inferred when over expression or increased dosage of one gene causes a growth defect in a strain that is mutated or deleted for another gene.

Low-BioGRID
1257303
MRE11 SAE2
Far Western
Far Western

An interaction is detected between a protein immobilized on a membrane and a purified protein probe.

Low-BioGRID
-
SAE2 MRE11
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
346185
SAE2 MRE11
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
163990
SAE2 MRE11
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
353039
SAE2 MRE11
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2614447
SAE2 MRE11
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
1257302
SAE2 MRE11
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
3199782
MRE11 SAE2
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2346202
SAE2 MRE11
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
SAE2 MRE11
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
MRE11 SAE2
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
824425
MRE11 SAE2
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
MRE11 SAE2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
589492
SAE2 MRE11
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2533706
MRE11 SAE2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2751636
SAE2 MRE11
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2399376
SAE2 MRE11
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
2598345
SAE2 MRE11
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
1257299
SAE2 MRE11
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
2550073
SAE2 MRE11
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
3573380
SAE2 MRE11
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
1535226
MRE11 SAE2
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-

Curated By

  • BioGRID