SGS1
Gene Ontology Biological Process
- DNA double-strand break processing [IGI]
- DNA duplex unwinding [IDA]
- DNA topological change [IDA]
- DNA unwinding involved in DNA replication [IDA]
- cellular response to DNA damage stimulus [IMP]
- chromosome organization [IMP]
- double-strand break repair via homologous recombination [IGI, IMP]
- gene conversion at mating-type locus, DNA double-strand break processing [IGI]
- intra-S DNA damage checkpoint [IGI, IMP]
- meiotic DNA double-strand break processing [IGI]
- meiotic chromosome segregation [IMP]
- mitotic sister chromatid segregation [IMP]
- negative regulation of meiotic joint molecule formation [IGI]
- regulation of reciprocal meiotic recombination [IGI]
- replicative cell aging [IMP]
- telomere maintenance [IGI]
- telomere maintenance via recombination [IGI, IMP]
- telomeric 3' overhang formation [IGI]
Gene Ontology Molecular Function
CDC7
Gene Ontology Biological Process
- DNA replication initiation [IMP]
- double-strand break repair via break-induced replication [IMP]
- negative regulation of exit from mitosis [IPI]
- peptidyl-serine phosphorylation [IDA]
- positive regulation of meiosis I [IGI]
- positive regulation of meiotic DNA double-strand break formation [IGI]
- premeiotic DNA replication [IMP]
- protein phosphorylation [IMP]
- regulation of chromatin silencing at telomere [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Phenotypic Enhancement
A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Exploring Quantitative Yeast Phenomics with Single-Cell Analysis of DNA Damage Foci.
A significant challenge of functional genomics is to develop methods for genome-scale acquisition and analysis of cell biological data. Here, we present an integrated method that combines genome-wide genetic perturbation of Saccharomyces cerevisiae with high-content screening to facilitate the genetic description of sub-cellular structures and compartment morphology. As proof of principle, we used a Rad52-GFP marker to examine DNA damage foci ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: subcellular morphology (APO:0000226)
- phenotype: mitotic recombination (APO:0000225)
Additional Notes
- essential TS collection
- frequency of Rad52 foci
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDC7 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3513 | BioGRID | 364824 | |
CDC7 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.338 | BioGRID | 1964095 | |
SGS1 CDC7 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.205 | BioGRID | 2062770 | |
CDC7 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5647 | BioGRID | 2428483 | |
SGS1 CDC7 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 2898225 | |
CDC7 SGS1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 451553 |
Curated By
- BioGRID