POL3
Gene Ontology Biological Process
- DNA replication [IMP]
- DNA replication proofreading [IBA]
- DNA replication, removal of RNA primer [IDA]
- DNA-dependent DNA replication maintenance of fidelity [IGI]
- RNA-dependent DNA replication [IDA]
- base-excision repair, gap-filling [IBA]
- nucleotide-excision repair, DNA gap filling [IBA]
- regulation of mitotic cell cycle [IBA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
POL2
Gene Ontology Biological Process
- DNA replication proofreading [IMP]
- DNA-dependent DNA replication [IDA]
- base-excision repair [IMP]
- double-strand break repair [IMP]
- double-strand break repair via nonhomologous end joining [IGI, IMP]
- error-prone translesion synthesis [IDA]
- gene conversion [IMP]
- heterochromatin organization involved in chromatin silencing [IGI, IMP]
- intra-S DNA damage checkpoint [IGI, IMP, IPI]
- leading strand elongation [IMP]
- mitotic DNA replication checkpoint [IMP]
- mitotic sister chromatid cohesion [IMP]
- nucleotide-excision repair, DNA gap filling [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Phenotypic Suppression
A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.
Publication
Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae.
To investigate nuclear DNA replication enzymology in vivo, we have studied Saccharomyces cerevisiae strains containing a pol2-16 mutation that inactivates the catalytic activities of DNA polymerase ε (Pol ε). Although pol2-16 mutants survive, they present very tiny spore colonies, increased doubling time, larger than normal cells, aberrant nuclei, and rapid acquisition of suppressor mutations. These phenotypes reveal a severe growth ... [more]
Throughput
- Low Throughput
Ontology Terms
- chromosome/plasmid maintenance (APO:0000143)
Additional Notes
- genetic complex
- in the triple mutant pol3L612M/rnh201/pol2-16 strain, the strand bias is greatly reduced for significantly more incorporating more ribonucleotides in the lagging strand compared to the pol3L612M/rnh201 double mutant
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
POL2 POL3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4206 | BioGRID | 1950087 | |
POL2 POL3 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 3022295 | |
POL2 POL3 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 2900697 | |
POL2 POL3 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 162904 | |
POL3 POL2 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 463264 | |
POL2 POL3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158495 |
Curated By
- BioGRID