CDC25
Gene Ontology Biological Process
- mitotic DNA replication checkpoint [IMP]
- peptidyl-tyrosine dephosphorylation involved in activation of protein kinase activity [IDA]
- positive regulation of cyclin-dependent protein serine/threonine kinase activity involved in G2/M transition of mitotic cell cycle [IMP]
- regulation of G2/M transition of mitotic cell cycle [IMP]
- regulation of cell size [NAS]
- signal transduction involved in intra-S DNA damage checkpoint [IMP]
Gene Ontology Molecular Function
WIS1
Gene Ontology Biological Process
- G1 cell cycle arrest in response to nitrogen starvation [IMP]
- G1 to G0 transition [IMP]
- MAPK cascade [IDA]
- MAPK cascade in response to starvation [IMP]
- MAPK cascade involved in osmosensory signaling pathway [IMP]
- activation of MAPK activity [IDA]
- mitotic cell cycle arrest in response to nitrogen starvation [IMP]
- peptidyl-tyrosine phosphorylation [IDA]
- positive regulation of G2/M transition of mitotic cell cycle [IMP]
- positive regulation of transcription factor import into nucleus in response to oxidative stress [IMP]
- protein autophosphorylation [IMP]
- protein phosphorylation [IMP]
- regulation of G2/M transition of mitotic cell cycle [IMP]
- regulation of cell shape involved in G1 to G0 transition [IMP]
- regulation of translation in response to stress [IMP]
- stress-activated MAPK cascade [IMP]
Gene Ontology Molecular Function
Synthetic Rescue
A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.
Publication
Polo kinase links the stress pathway to cell cycle control and tip growth in fission yeast.
Stress-activated mitogen-activated protein kinase cascades instigate a range of changes to enable eukaryotic cells to cope with particular insults. In Schizosaccharomyces pombe these responses include the transcription of specific gene sets and inhibition of entry into mitosis. The S. pombe stress response pathway (SRP) also promotes commitment to mitosis in unperturbed cell cycles to allow cells to match their rate ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDC25 WIS1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | PomBase | 882979 | |
CDC25 WIS1 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 883102 | |
WIS1 CDC25 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 349445 | |
CDC25 WIS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 246373 | |
CDC25 WIS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | PomBase | - | |
WIS1 CDC25 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | PomBase | - | |
CDC25 WIS1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | PomBase | - |