BAIT

PAF1

L000002621, YBR279W
Component of the Paf1p complex involved in transcription elongation; binds to and modulates the activity of RNA polymerases I and II; required for expression of a subset of genes, including cell cycle-regulated genes; involved in SER3 repression by helping to maintain SRG1 transcription-dependent nucleosome occupancy; homolog of human PD2/hPAF1
GO Process (25)
GO Function (6)
GO Component (3)

Gene Ontology Biological Process

Saccharomyces cerevisiae (S288c)
PREY

RPB3

DNA-directed RNA polymerase II core subunit RPB3, B44, L000001677, L000001589, YIL021W
RNA polymerase II third largest subunit B44; part of central core; similar to prokaryotic alpha subunit
GO Process (2)
GO Function (2)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Publication

Transcription-dependent targeting of Hda1C to hyperactive genes mediates H4-specific deacetylation in yeast.

Ha SD, Ham S, Kim MY, Kim JH, Jang I, Lee BB, Lee MK, Hwang JT, Roh TY, Kim T

In yeast, Hda1 histone deacetylase complex (Hda1C) preferentially deacetylates histones H3 and H2B, and functionally interacts with Tup1 to repress transcription. However, previous studies identified global increases in histone H4 acetylation in cells lacking Hda1, a component of Hda1C. Here, we find that Hda1C binds to hyperactive genes, likely via the interaction between the Arb2 domain of Hda1 and RNA ... [more]

Nat Commun Dec. 19, 2018; 10(1);4270 [Pubmed: 31537788]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RPB3 PAF1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
3309310
RPB3 PAF1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
2200120
PAF1 RPB3
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High5BioGRID
3614465
PAF1 RPB3
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
RPB3 PAF1
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-

Curated By

  • BioGRID