BAIT

NOP1

LOT3, rRNA methyltransferase NOP1, L000001260, YDL014W
Histone glutamine methyltransferase, modifies H2A at Q105 in nucleolus; component of the small subunit processome complex, which is required for processing of pre-18S rRNA; ortholog of mammalian fibrillarin
Saccharomyces cerevisiae (S288c)
PREY

NOP56

SIK1, snoRNP complex protein NOP56, L000002982, YLR197W
Essential evolutionarily-conserved nucleolar protein; component of the box C/D snoRNP complexes that direct 2'-O-methylation of pre-rRNA during its maturation; overexpression causes spindle orientation defects
GO Process (2)
GO Function (1)
GO Component (5)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Saccharomyces cerevisiae (S288c)

Co-crystal Structure

Interaction directly demonstrated at the atomic level by X-ray crystallography. Also used for NMR or Electron Microscopy (EM) structures. If there is no obvious bait-hit directionality to the interaction involving 3 or more proteins, then the co-crystallized proteins should be listed as a complex.

Publication

High-resolution structure of eukaryotic Fibrillarin interacting with Nop56 N-terminal domain.

Hoefler S, Lukat P, Blankenfeldt W, Carlomagno T

Ribosomal RNA (rRNA) carries extensive 2'-O-methyl marks at functionally important sites. This simple chemical modification is thought to confer stability, promote RNA folding and contribute to generate a heterogenous ribosome population with a yet-uncharacterized function. 2'-O-methylation occurs both in archaea and eukaryotes and is accomplished by the Box C/D RNP enzyme in an RNA-guided manner. Extensive and partially conflicting structural ... [more]

RNA Jan. 22, 2021; (); [Pubmed: 33483369]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
NOP1 NOP56
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
NOP56 NOP1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High6BioGRID
3594879
NOP56 NOP1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
NOP56 NOP1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
NOP56 NOP1
Affinity Capture-Western
Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Low-BioGRID
-
NOP1 NOP56
Cross-Linking-MS (XL-MS)
Cross-Linking-MS (XL-MS)

An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071).

High-BioGRID
3730498
NOP56 NOP1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4172BioGRID
1944174
NOP1 NOP56
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3073BioGRID
1922742
NOP1 NOP56
Reconstituted Complex
Reconstituted Complex

An interaction is detected between purified proteins in vitro.

Low-BioGRID
-
NOP1 NOP56
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158364
NOP56 NOP1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158365
NOP1 NOP56
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-
NOP56 NOP1
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-
NOP1 NOP56
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-
NOP1 NOP56
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Low-BioGRID
-
NOP56 NOP1
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

High-BioGRID
2789527
NOP1 NOP56
Two-hybrid
Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

High-BioGRID
2789363

Curated By

  • BioGRID