NOP56
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
NOP1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
The social and structural architecture of the yeast protein interactome.
Cellular functions are mediated by protein-protein interactions, and mapping the interactome provides fundamental insights into biological systems. Affinity purification coupled to mass spectrometry is an ideal tool for such mapping, but it has been difficult to identify low copy number complexes, membrane complexes and complexes that are disrupted by protein tagging. As a result, our current knowledge of the interactome ... [more]
Quantitative Score
- 6.0 [Score_FDR+correlation]
Throughput
- High Throughput
Additional Notes
- Protein interactions were identified using statistically significant enrichment of the proteins in the forward and reverse pull-downs, as well as making use of the profile similarities of interacting proteins in a correlation analysis. High confidence interactions have a total score >=2. This score is a sum of the FDR score of the forward pull-down + FDR score of the reverse pull-down + correlation score.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
NOP1 NOP56 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
NOP56 NOP1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
NOP56 NOP1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
NOP56 NOP1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
NOP1 NOP56 | Co-crystal Structure Co-crystal Structure Interaction directly demonstrated at the atomic level by X-ray crystallography. Also used for NMR or Electron Microscopy (EM) structures. If there is no obvious bait-hit directionality to the interaction involving 3 or more proteins, then the co-crystallized proteins should be listed as a complex. | Low | - | BioGRID | - | |
NOP1 NOP56 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3730498 | |
NOP56 NOP1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4172 | BioGRID | 1944174 | |
NOP1 NOP56 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3073 | BioGRID | 1922742 | |
NOP1 NOP56 | Reconstituted Complex Reconstituted Complex An interaction is detected between purified proteins in vitro. | Low | - | BioGRID | - | |
NOP1 NOP56 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158364 | |
NOP56 NOP1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158365 | |
NOP1 NOP56 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | Low | - | BioGRID | - | |
NOP56 NOP1 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | Low | - | BioGRID | - | |
NOP1 NOP56 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | Low | - | BioGRID | - | |
NOP1 NOP56 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | Low | - | BioGRID | - | |
NOP56 NOP1 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | High | - | BioGRID | 2789527 | |
NOP1 NOP56 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | High | - | BioGRID | 2789363 |
Curated By
- BioGRID