RPS14
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- SRP-dependent cotranslational protein targeting to membrane [TAS]
- cellular protein metabolic process [TAS]
- erythrocyte differentiation [IMP]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- maturation of SSU-rRNA [ISS]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- regulation of translation [IMP]
- ribosomal small subunit assembly [IMP, ISS]
- translation [IC, IMP, TAS]
- translational elongation [TAS]
- translational initiation [TAS]
- translational termination [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral transcription [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RPS3A
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- SRP-dependent cotranslational protein targeting to membrane [TAS]
- cellular protein metabolic process [TAS]
- cytoplasmic translation [IBA]
- gene expression [TAS]
- mRNA metabolic process [TAS]
- negative regulation of apoptotic process [IMP]
- nuclear-transcribed mRNA catabolic process, nonsense-mediated decay [TAS]
- translation [IC, IMP, NAS, TAS]
- translational elongation [TAS]
- translational initiation [TAS]
- translational termination [TAS]
- viral life cycle [TAS]
- viral process [TAS]
- viral transcription [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Dual proteome-scale networks reveal cell-specific remodeling of the human interactome.
Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 ... [more]
Quantitative Score
- 0.999678841 [compPASS Score]
Throughput
- High Throughput
Additional Notes
- BioPlex 3.0 HEK 293T cells CompPASS score = 0.999678841, threshold = 0.75. Quantitative scores are calculated by CompPASS-Plus (Huttlin et al. Cell 2015, PMID: 26186194). The 0.75 threshold represents the top 2% of scores in HEK293T.
- BioPlex HCT HCT116 cells CompPASS score = 0.999568973, threshold = 0.75. Quantitative scores are calculated by CompPASS-Plus (Huttlin et al. Cell 2015, PMID: 26186194). The 0.75 threshold represents the top 2% of scores in HCT116.
- Only scores from within the same cell line in BioPlex HCT (PMID: 33961781) should be compared directly. For comparison of HEK293T and HCT116 interaction networks with relaxed threshold = 0.1, see BioPlex Interactome (https://bioplex.hms.harvard.edu/index.php).
- This data may be re-scored from BioPlex 1.0 (PMID: 26186194) and BioPlex 2.0 (PMID: 28514442). Only scores from within the same cell line in BioPlex 3.0 (PMID: 33961781) should be compared directly. For comparison of HEK293T and HCT116 interaction networks with relaxed threshold = 0.1, see BioPlex Interactome (https://bioplex.hms.harvard.edu/index.php).
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RPS14 RPS3A | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.9603 | BioGRID | 2249805 | |
RPS14 RPS3A | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 0.756 | BioGRID | 743385 | |
RPS3A RPS14 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | - | BioGRID | 3446581 | |
RPS3A RPS14 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | - | BioGRID | 924944 | |
RPS3A RPS14 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 0.9959 | BioGRID | 1270644 | |
RPS3A RPS14 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | - | |
RPS14 RPS3A | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3682808 | |
RPS3A RPS14 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | - | |
RPS3A RPS14 | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3755915 | |
RPS14 RPS3A | Cross-Linking-MS (XL-MS) Cross-Linking-MS (XL-MS) An interaction is detected between two proteins using chemically reactive or photo-activatable cross-linking reagents that covalently link amino acids in close proximity, followed by mass spectrometry analysis to identify the linked peptides (reviewed in PMID 37406423, 37104977). Experiments may be carried with live cells or cell lysates in which all proteins are expressed at endogenous levels (e.g. PMID 34349018, 35235311) or with recombinant proteins (e.g., PMID 28537071). | High | - | BioGRID | 3756738 | |
RPS3A RPS14 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | 2786563 |
Curated By
- BioGRID