EIF4EBP3
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
EIF4E
Gene Ontology Biological Process
- G1/S transition of mitotic cell cycle [IMP]
- RNA metabolic process [TAS]
- cellular protein metabolic process [TAS]
- cytokine-mediated signaling pathway [TAS]
- gene expression [TAS]
- insulin receptor signaling pathway [TAS]
- mRNA export from nucleus [TAS]
- mRNA metabolic process [TAS]
- nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay [TAS]
- nuclear-transcribed mRNA poly(A) tail shortening [TAS]
- positive regulation of mitotic cell cycle [IMP]
- regulation of translation [IDA]
- translation [TAS]
- translational initiation [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Localisation and regulation of the eIF4E-binding protein 4E-BP3.
The cap-binding protein eIF4E-binding protein 3 (4E-BP3) was identified some years ago, but its properties have not been investigated in detail. In this report, we investigated the regulation and localisation of 4E-BP3. We show that 4E-BP3 is present in the nucleus as well as in the cytoplasm in primary T cells, HEK293 cells and HeLa cells. 4E-BP3 was associated with ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
EIF4EBP3 EIF4E | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.998 | BioGRID | 3226985 | |
EIF4EBP3 EIF4E | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.999 | BioGRID | 3100918 | |
EIF4EBP3 EIF4E | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
EIF4E EIF4EBP3 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | High | - | BioGRID | - | |
EIF4E EIF4EBP3 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | High | - | BioGRID | 2731458 | |
EIF4E EIF4EBP3 | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | High | - | BioGRID | - |
Curated By
- BioGRID