POL3
Gene Ontology Biological Process
- DNA replication [IMP]
- DNA replication proofreading [IBA]
- DNA replication, removal of RNA primer [IDA]
- DNA-dependent DNA replication maintenance of fidelity [IGI]
- RNA-dependent DNA replication [IDA]
- base-excision repair, gap-filling [IBA]
- nucleotide-excision repair, DNA gap filling [IBA]
- regulation of mitotic cell cycle [IBA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RAD51
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Dosage Rescue
A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.
Publication
Fe-S coordination defects in the replicative DNA polymerase delta cause deleterious DNA replication in vivo and subsequent DNA damage in the yeast Saccharomyces cerevisiae.
B-type eukaryotic polymerases contain a [4Fe-4S] cluster in their C-terminus domain, whose role is not fully understood yet. Among them, DNA polymerase delta (Pol?) plays an essential role in chromosomal DNA replication, mostly during lagging strand synthesis. Previous in vitro work suggested that the Fe-S cluster in Pol? is required for efficient binding of the Pol31 subunit, ensuring stability of ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
- phenotype: heat sensitivity (APO:0000147)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
POL3 RAD51 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3952 | BioGRID | 364054 | |
POL3 RAD51 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5073 | BioGRID | 1965058 | |
RAD51 POL3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.517 | BioGRID | 2040277 | |
POL3 RAD51 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 459053 | |
POL3 RAD51 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 1518569 | |
POL3 RAD51 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 591863 | |
POL3 RAD51 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158500 | |
RAD51 POL3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158501 | |
POL3 RAD51 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 531985 |
Curated By
- BioGRID