POL3
Gene Ontology Biological Process
- DNA replication [IMP]
- DNA replication proofreading [IBA]
- DNA replication, removal of RNA primer [IDA]
- DNA-dependent DNA replication maintenance of fidelity [IGI]
- RNA-dependent DNA replication [IDA]
- base-excision repair, gap-filling [IBA]
- nucleotide-excision repair, DNA gap filling [IBA]
- regulation of mitotic cell cycle [IBA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RAD51
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Stable interactions between DNA polymerase delta catalytic and structural subunits are essential for efficient DNA repair.
Eukaryotic DNA polymerase delta (Pol delta) activity is crucial for chromosome replication and DNA repair and thus, plays an essential role in genome stability. In Saccharomyces cerevisiae, Pol delta is a heterotrimeric complex composed of the catalytic subunit Pol3, the structural B subunit Pol31, and Pol32, an additional auxiliary subunit. Pol3 interacts with Pol31 thanks to its C-terminal domain (CTD) ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: resistance to chemicals (APO:0000087)
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- double mutants show increased sensitivity to HU (PubCHEM ID: 3657 CHEBI ID: 44423
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
POL3 RAD51 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | BioGRID | 3304281 | |
POL3 RAD51 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.3952 | BioGRID | 364054 | |
POL3 RAD51 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.5073 | BioGRID | 1965058 | |
RAD51 POL3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.517 | BioGRID | 2040277 | |
POL3 RAD51 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 1518569 | |
POL3 RAD51 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 591863 | |
POL3 RAD51 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158500 | |
RAD51 POL3 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 158501 | |
POL3 RAD51 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 531985 |
Curated By
- BioGRID