AKT1
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- G-protein coupled receptor signaling pathway [TAS]
- RNA metabolic process [TAS]
- T cell costimulation [TAS]
- activation-induced cell death of T cells [IMP]
- apoptotic process [TAS]
- blood coagulation [TAS]
- cell differentiation [TAS]
- cell proliferation [TAS]
- cellular protein modification process [TAS]
- cellular response to insulin stimulus [IMP, ISS]
- endocrine pancreas development [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- gene expression [TAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [IMP]
- insulin-like growth factor receptor signaling pathway [IMP]
- intracellular signal transduction [IDA]
- intrinsic apoptotic signaling pathway [TAS]
- mRNA metabolic process [TAS]
- mammary gland epithelial cell differentiation [TAS]
- membrane organization [TAS]
- negative regulation of apoptotic process [IDA]
- negative regulation of autophagy [IMP]
- negative regulation of cysteine-type endopeptidase activity involved in apoptotic process [ISS]
- negative regulation of endopeptidase activity [IMP]
- negative regulation of extrinsic apoptotic signaling pathway in absence of ligand [TAS]
- negative regulation of fatty acid beta-oxidation [IMP]
- negative regulation of neuron death [NAS]
- negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway [NAS]
- negative regulation of plasma membrane long-chain fatty acid transport [IMP]
- negative regulation of protein kinase activity [IMP, ISS]
- negative regulation of proteolysis [IMP]
- negative regulation of release of cytochrome c from mitochondria [ISS]
- neurotrophin TRK receptor signaling pathway [TAS]
- nitric oxide biosynthetic process [TAS]
- nitric oxide metabolic process [TAS]
- peptidyl-serine phosphorylation [IDA]
- phosphatidylinositol-mediated signaling [TAS]
- phosphorylation [IDA]
- platelet activation [TAS]
- positive regulation of blood vessel endothelial cell migration [IDA]
- positive regulation of cell growth [IDA]
- positive regulation of cellular protein metabolic process [ISS]
- positive regulation of cyclin-dependent protein serine/threonine kinase activity involved in G1/S transition of mitotic cell cycle [IDA]
- positive regulation of endothelial cell proliferation [IMP]
- positive regulation of establishment of protein localization to plasma membrane [IMP]
- positive regulation of fat cell differentiation [IMP]
- positive regulation of glucose import [IMP]
- positive regulation of glucose metabolic process [IMP]
- positive regulation of glycogen biosynthetic process [IMP, NAS]
- positive regulation of lipid biosynthetic process [IMP]
- positive regulation of nitric oxide biosynthetic process [IMP]
- positive regulation of nitric-oxide synthase activity [IMP]
- positive regulation of peptidyl-serine phosphorylation [IDA]
- positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway [TAS]
- positive regulation of protein phosphorylation [IDA]
- positive regulation of sequence-specific DNA binding transcription factor activity [IDA]
- protein autophosphorylation [TAS]
- protein import into nucleus, translocation [IMP]
- protein phosphorylation [IDA]
- regulation of cell cycle checkpoint [TAS]
- regulation of cell migration [IMP, TAS]
- regulation of glycogen biosynthetic process [IMP]
- regulation of neuron projection development [ISS]
- regulation of nitric-oxide synthase activity [TAS]
- response to UV-A [IDA]
- response to fluid shear stress [IMP]
- response to heat [TAS]
- response to oxidative stress [ISS]
- signal transduction [TAS]
- small molecule metabolic process [TAS]
Gene Ontology Molecular Function- 14-3-3 protein binding [IPI]
- ATP binding [IC, IDA]
- enzyme binding [ISS]
- identical protein binding [IPI]
- kinase activity [IDA]
- nitric-oxide synthase regulator activity [IMP]
- phosphatidylinositol-3,4,5-trisphosphate binding [IDA]
- phosphatidylinositol-3,4-bisphosphate binding [IDA]
- protein binding [IPI]
- protein kinase activity [TAS]
- protein serine/threonine kinase activity [IDA, TAS]
- protein serine/threonine/tyrosine kinase activity [IDA]
- 14-3-3 protein binding [IPI]
- ATP binding [IC, IDA]
- enzyme binding [ISS]
- identical protein binding [IPI]
- kinase activity [IDA]
- nitric-oxide synthase regulator activity [IMP]
- phosphatidylinositol-3,4,5-trisphosphate binding [IDA]
- phosphatidylinositol-3,4-bisphosphate binding [IDA]
- protein binding [IPI]
- protein kinase activity [TAS]
- protein serine/threonine kinase activity [IDA, TAS]
- protein serine/threonine/tyrosine kinase activity [IDA]
YIF1B
Biochemical Activity (Phosphorylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Multifaceted Regulation of Akt by Diverse C-Terminal Post-translational Modifications.
Akt is a Ser/Thr protein kinase that regulates cell growth and metabolism and is considered a therapeutic target for cancer. Regulation of Akt by membrane recruitment and post-translational modifications (PTMs) has been extensively studied. The most well-established mechanism for cellular Akt activation involves phosphorylation on its activation loop on Thr308 by PDK1 and on its C-terminal tail on Ser473 by ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
AKT1 YIF1B | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 0.6131 | BioGRID | 3549016 |
Curated By
- BioGRID