BAIT

SGS1

ATP-dependent DNA helicase SGS1, L000001877, YMR190C
RecQ family nucleolar DNA helicase; role in genome integrity maintenance; regulates chromosome synapsis and meiotic joint molecule/crossover formation; stimulates DNA catenation/decatenation activity of Top3p; potential repressor of a subset of rapamycin responsive genes; rapidly lost in response to rapamycin in Rrd1p-dependent manner; similar to human BLM and WRN proteins implicated in Bloom and Werner syndromes; forms nuclear foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

NFI1

SIZ2, SUMO ligase NFI1, L000002966, YOR156C
SUMO E3 ligase; catalyzes sumoylation of Yku70p/Yku80p and Sir4p promoting chromatin anchoring; DNA-bound form catalyzes a DNA-damaged triggered sumoylation wave resulting in multisite modification of several DNA repair proteins, enhancing interactions between these proteins and accelerating repair; promotes telomere anchoring to the nuclear envelope; involved in maintenance of proper telomere length; NFI1 has a paralog, SIZ1, that arose from the whole genome duplication
GO Process (3)
GO Function (2)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Publication

SMC complexes are guarded by the SUMO protease Ulp2 against SUMO-chain-mediated turnover.

Psakhye I, Branzei D

Structural maintenance of chromosomes (SMCs) complexes, cohesin, condensin, and Smc5/6, are essential for viability and participate in multiple processes, including sister chromatid cohesion, chromosome condensation, and DNA repair. Here we show that SUMO chains targetĀ all three SMC complexes and are antagonized by the SUMO protease Ulp2 to prevent their turnover. We uncover that the essential role of the cohesin-associated subunit ... [more]

Cell Rep Aug. 03, 2021; 36(5);109485 [Pubmed: 34348159]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • genetic complex
  • mutation suppresses the double mutant

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SGS1 NFI1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
2894297
SGS1 NFI1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
239668

Curated By

  • BioGRID