RICTOR
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- T cell costimulation [TAS]
- actin cytoskeleton reorganization [IMP]
- embryo development [ISS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-serine phosphorylation [IGI]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of TOR signaling [IMP]
- regulation of actin cytoskeleton organization [IMP]
- regulation of protein kinase B signaling [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MYH9
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- actin cytoskeleton reorganization [IMP]
- actin filament-based movement [IDA]
- actomyosin structure organization [IDA]
- angiogenesis [IDA]
- axon guidance [TAS]
- blood vessel endothelial cell migration [IMP]
- cytokinesis [IMP]
- integrin-mediated signaling pathway [NAS]
- leukocyte migration [NAS]
- membrane protein ectodomain proteolysis [IDA]
- monocyte differentiation [IEP]
- platelet aggregation [IMP]
- platelet formation [IMP]
- protein transport [IMP]
- regulation of cell shape [IMP]
Gene Ontology Molecular Function- ADP binding [IDA]
- ATP binding [IDA]
- ATPase activity [IDA]
- actin binding [IDA]
- actin filament binding [IDA, NAS]
- actin-dependent ATPase activity [IDA]
- microfilament motor activity [IDA]
- motor activity [NAS]
- poly(A) RNA binding [IDA]
- protein anchor [IMP]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- ADP binding [IDA]
- ATP binding [IDA]
- ATPase activity [IDA]
- actin binding [IDA]
- actin filament binding [IDA, NAS]
- actin-dependent ATPase activity [IDA]
- microfilament motor activity [IDA]
- motor activity [NAS]
- poly(A) RNA binding [IDA]
- protein anchor [IMP]
- protein binding [IPI]
- protein homodimerization activity [IDA]
Gene Ontology Cellular Component
- COP9 signalosome [IDA]
- actin cytoskeleton [IDA]
- actomyosin [IDA]
- actomyosin contractile ring [IDA]
- cell leading edge [IDA]
- cleavage furrow [IDA]
- cytoplasm [IDA]
- cytosol [IDA]
- extracellular vesicular exosome [IDA]
- immunological synapse [IDA]
- integrin complex [IDA]
- membrane [IDA]
- myosin II complex [IDA]
- myosin II filament [IDA]
- nucleus [IDA]
- plasma membrane [IDA]
- protein complex [IDA]
- ruffle [IDA]
- stress fiber [IDA]
- uropod [IDA]
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Significance of filamin A in mTORC2 function in glioblastoma.
Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. GBM has been associated with a high level of the mechanistic target of rapamycin complex 2 (mTORC2) activity. We aimed to observe roles of mTORC2 in GBM cells especially on actin cytoskeleton reorganization, cell migration and invasion, and further determine new important players involved in the regulation of these ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| RICTOR MYH9 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
| RICTOR MYH9 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| RICTOR MYH9 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | - | BioGRID | - |
Curated By
- BioGRID