BAIT

CLB3

B-type cyclin CLB3, L000000351, YDL155W
B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the G2/M transition; may be involved in DNA replication and spindle assembly; accumulates during S phase and G2, then targeted for ubiquitin-mediated degradation; relative distribution to the nucleus increases upon DNA replication stress; CLB3 has a paralog, CLB4, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

CLB2

B-type cyclin CLB2, L000000350, YPR119W
B-type cyclin involved in cell cycle progression; activates Cdc28p to promote the transition from G2 to M phase; accumulates during G2 and M, then targeted via a destruction box motif for ubiquitin-mediated degradation by the proteasome; CLB2 has a paralog, CLB1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Dissection of mitotic functions of the yeast cyclin Clb2.

Kuczera T, Bayram O, Sari F, Braus GH, Irniger S

Progression through mitosis requires the activity of cyclin-dependent kinases (CDKs) associated with regulatory cyclin subunits. In the yeast Saccharomyces cerevisiae, Clb2 has the most important role among the four mitotic cyclins, Clb1-4, manifested by data showing that simultaneous deletion of the CLB1, CLB3 and CLB4 genes has only minor effects on mitosis. Thus, Clb2 alone is sufficient for all essential ... [more]

Unknown Jul. 13, 2010; 9(13); [Pubmed: 20581451]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • Mutation of CLB2 in a CLB3/CLB4 deletion background is lethal
  • genetic complex

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CLB2 CLB3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-5.7379BioGRID
216738
CLB2 CLB3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2103BioGRID
422129
CLB2 CLB3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2266BioGRID
2196126
CLB3 CLB2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-5.5969BioGRID
325967
CLB2 CLB3
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
157874

Curated By

  • BioGRID