BAIT

RAD53

LSD1, MEC2, SPK1, serine/threonine/tyrosine protein kinase RAD53, L000001573, YPL153C
DNA damage response protein kinase; required for cell-cycle arrest in response to DNA damage; activated by trans autophosphorylation when interacting with hyperphosphorylated Rad9p; also interacts with ARS1 and plays a role in initiation of DNA replication; activates the downstream kinase Dun1p; differentially senses mtDNA depletion and mitochondrial ROS; required for regulation of copper genes in response to DNA-damaging agents; relocalizes to cytosol in response to hyoxia
Saccharomyces cerevisiae (S288c)
PREY

DOA1

UFD3, ZZZ4, L000002961, YKL213C
WD repeat protein required for ubiquitin-mediated protein degradation; forms a complex with Cdc48p; plays a role in controlling cellular ubiquitin concentration; also promotes efficient NHEJ in postdiauxic/stationary phase; facilitates N-terminus-dependent proteolysis of centromeric histone H3 (Cse4p) for faithful chromosome segregation; protein increases in abundance and relocalizes from nucleus to nuclear periphery upon DNA replication stress
GO Process (3)
GO Function (1)
GO Component (2)
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

A DNA integrity network in the yeast Saccharomyces cerevisiae.

Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD

A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, 16 functional modules or minipathways were defined based on patterns of global SFL interactions. Modules or genes involved in DNA replication, DNA-replication checkpoint (DRC) signaling, and oxidative stress response were identified as the major guardians ... [more]

Cell Mar. 10, 2006; 124(5);1069-81 [Pubmed: 16487579]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • confirmed by RSA and tetrad analysis

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RAD53 DOA1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-3.8042BioGRID
219989

Curated By

  • BioGRID