BAIT

REV3

PSO1, L000001616, YPL167C
Catalytic subunit of DNA polymerase zeta; involved in translesion synthesis during post-replication repair; required for mutagenesis induced by DNA damage; involved in double-strand break repair; forms a complex with Rev7p, Pol31p and Pol32p
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

RAD5

REV2, SNM2, DNA helicase RAD5, L000001559, YLR032W
DNA helicase/Ubiquitin ligase; involved in error-free branch of DNA damage tolerance (DDT) pathway; proposed to promote replication fork regression during postreplication repair by template switching; stimulates synthesis of free and PCNA-bound polyubiquitin chains by Ubc13p-Mms2p; required for error-prone translesion synthesis; forms nuclear foci upon DNA replication stress; associates with native telomeres, cooperates with homologous recombination in senescent cells
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

The Rad5 helicase activity is dispensable for error-free DNA post-replication repair.

Ball LG, Xu X, Blackwell S, Hanna MD, Lambrecht AD, Xiao W

DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and is subdivided into two parallel pathways: error-prone translesion DNA synthesis and error-free PRR. While both pathways are dependent on the ubiquitination of PCNA, error-free PRR utilizes noncanonical K63-linked polyubiquitinated PCNA to signal lesion bypass through template switch, a process thought to be dependent on Mms2-Ubc13 and a RING finger motif ... [more]

DNA Repair (Amst.) Apr. 01, 2014; 16(0);74-83 [Pubmed: 24674630]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: resistance to chemicals (APO:0000087)
  • phenotype: vegetative growth (APO:0000106)
  • phenotype: uv resistance (APO:0000085)

Additional Notes

  • rad5-AA allele
  • rad5-I916A allele
  • rev3 rad5 double mutant has increased sensitivity on MMS and UV

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
REV3 RAD5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1273BioGRID
419621
RAD5 REV3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1273BioGRID
396962
REV3 RAD5
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1241BioGRID
2192344
RAD5 REV3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-4.84BioGRID
2358736
REV3 RAD5
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
518433
REV3 RAD5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
1105093
RAD5 REV3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2600054
REV3 RAD5
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2343182
REV3 RAD5
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
204247
RAD5 REV3
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
159887

Curated By

  • BioGRID