XRS2
Gene Ontology Biological Process
- base-excision repair [IGI, IMP]
- double-strand break repair via nonhomologous end joining [IMP]
- meiotic DNA double-strand break formation [IMP]
- mitochondrial double-strand break repair via homologous recombination [IMP]
- sporulation resulting in formation of a cellular spore [IMP]
- telomere maintenance [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
MEC1
Gene Ontology Biological Process
- DNA damage induced protein phosphorylation [IMP]
- DNA recombination [IMP]
- DNA replication [IMP]
- histone phosphorylation [IGI, IMP]
- nucleobase-containing compound metabolic process [IGI]
- positive regulation of DNA-dependent DNA replication [IMP]
- reciprocal meiotic recombination [IMP]
- telomere maintenance [IDA]
- telomere maintenance via recombination [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
The yeast Xrs2 complex functions in S phase checkpoint regulation.
The Nbs1 complex is an evolutionarily conserved multisubunit nuclease composed of the Mre11, Rad50, and Nbs1 proteins. Hypomorphic mutations in the NBS1 or MRE11 genes in humans result in conditions characterized by DNA damage sensitivity, cell cycle checkpoint deficiency, and high cancer incidence. The equivalent complex in the yeast Saccharomyces cerevisiae (Xrs2p complex) has been implicated in DNA double-strand break ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: resistance to chemicals (APO:0000087)
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- double mutants show increased sensitivity to HU
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MEC1 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 3750218 | |
MEC1 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.381 | BioGRID | 1961531 | |
MEC1 XRS2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | - | |
MEC1 XRS2 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 156360 | |
MEC1 XRS2 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 2652816 | |
MEC1 XRS2 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | BioGRID | 2203474 |
Curated By
- BioGRID