BAIT

XRS2

L000002489, YDR369C
Protein required for DNA repair; component of the Mre11 complex, which is involved in double strand breaks, meiotic recombination, telomere maintenance, and checkpoint signaling
Saccharomyces cerevisiae (S288c)
PREY

MEC1

ESR1, RAD31, SAD3, protein kinase MEC1, L000000586, S000029404, S000007656, YBR136W
Genome integrity checkpoint protein and PI kinase superfamily member; Mec1p and Dun1p function in same pathway to regulate dNTP pools and telomere length; signal transducer required for cell cycle arrest and transcriptional responses to damaged or unreplicated DNA; facilitates replication fork progression and regulates P-body formation under replication stress; promotes interhomolog recombination by phosphorylating Hop1p; associates with shortened, dysfunctional telomeres
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

The yeast Xrs2 complex functions in S phase checkpoint regulation.

D'Amours D, Jackson SP

The Nbs1 complex is an evolutionarily conserved multisubunit nuclease composed of the Mre11, Rad50, and Nbs1 proteins. Hypomorphic mutations in the NBS1 or MRE11 genes in humans result in conditions characterized by DNA damage sensitivity, cell cycle checkpoint deficiency, and high cancer incidence. The equivalent complex in the yeast Saccharomyces cerevisiae (Xrs2p complex) has been implicated in DNA double-strand break ... [more]

Genes Dev. Sep. 01, 2001; 15(17);2238-49 [Pubmed: 11544181]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: resistance to chemicals (APO:0000087)
  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • double mutants show increased sensitivity to HU

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MEC1 XRS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.381BioGRID
1961531
MEC1 XRS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
-
MEC1 XRS2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
156360
MEC1 XRS2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2652816
MEC1 XRS2
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
2203474

Curated By

  • BioGRID