SGS1
Gene Ontology Biological Process
- DNA double-strand break processing [IGI]
- DNA duplex unwinding [IDA]
- DNA topological change [IDA]
- DNA unwinding involved in DNA replication [IDA]
- cellular response to DNA damage stimulus [IMP]
- chromosome organization [IMP]
- double-strand break repair via homologous recombination [IGI, IMP]
- gene conversion at mating-type locus, DNA double-strand break processing [IGI]
- intra-S DNA damage checkpoint [IGI, IMP]
- meiotic DNA double-strand break processing [IGI]
- meiotic chromosome segregation [IMP]
- mitotic sister chromatid segregation [IMP]
- negative regulation of meiotic joint molecule formation [IGI]
- regulation of reciprocal meiotic recombination [IGI]
- replicative cell aging [IMP]
- telomere maintenance [IGI]
- telomere maintenance via recombination [IGI, IMP]
- telomeric 3' overhang formation [IGI]
Gene Ontology Molecular Function
CDC48
Gene Ontology Biological Process
- ER-associated misfolded protein catabolic process [IMP]
- ER-associated ubiquitin-dependent protein catabolic process [IMP]
- SCF complex disassembly in response to cadmium stress [IMP]
- cytoplasm-associated proteasomal ubiquitin-dependent protein catabolic process [IMP]
- endoplasmic reticulum membrane fusion [IMP]
- macroautophagy [IMP]
- mitochondria-associated ubiquitin-dependent protein catabolic process [IMP]
- mitotic spindle disassembly [IMP]
- nonfunctional rRNA decay [IMP]
- nucleus-associated proteasomal ubiquitin-dependent protein catabolic process [IMP]
- piecemeal microautophagy of nucleus [IMP]
- positive regulation of histone H2B ubiquitination [IMP]
- positive regulation of protein localization to nucleus [IMP]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IMP]
- retrograde protein transport, ER to cytosol [IMP]
- ribophagy [IMP]
- ribosome-associated ubiquitin-dependent protein catabolic process [IMP]
- sister chromatid biorientation [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- Cdc48p-Npl4p-Ufd1p AAA ATPase complex [IDA]
- Cdc48p-Npl4p-Vms1p AAA ATPase complex [IDA]
- Doa10p ubiquitin ligase complex [IDA]
- Hrd1p ubiquitin ligase ERAD-L complex [IDA]
- RQC complex [IDA]
- cytosol [IDA]
- cytosolic large ribosomal subunit [IDA]
- endoplasmic reticulum membrane [IDA]
- mating projection tip [IDA]
- mitochondrion [IDA]
- nucleus [IDA]
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Saccharomyces cerevisiae Genetics Predicts Candidate Therapeutic Genetic Interactions at the Mammalian Replication Fork.
The concept of synthetic lethality has gained popularity as a rational guide for predicting chemotherapeutic targets based on negative genetic interactions between tumor-specific somatic mutations and a second-site target gene. One hallmark of most cancers that can be exploited by chemotherapies is chromosome instability (CIN). Because chromosome replication, maintenance, and segregation represent conserved and cell-essential processes, they can be modeled ... [more]
Quantitative Score
- 0.015560771 [SGA Score]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- SGA analysis for synthetic lethal interactions between mutations whose human orthologs are found to be mutated in cancers, and the deletion mutant collection, where the interaction probability P < 0.05
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDC48 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2536 | BioGRID | 363563 | |
SGS1 CDC48 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2839 | BioGRID | 2062773 | |
CDC48 SGS1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.244 | BioGRID | 1965806 | |
SGS1 CDC48 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 2898229 | |
SGS1 CDC48 | Phenotypic Enhancement Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | High | - | BioGRID | 2340613 | |
SGS1 CDC48 | Positive Genetic Positive Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 2898323 |
Curated By
- BioGRID